Molecular Detection of bla OXA-48 Gene Encoding Carbapenem Resistance Pseudomonas aeruginosa Clinical Isolates from Khartoum State Hospitals, Sudan

  • Doha Omer Ali
  • Mohamed Hussein Arbab
  • Nagla Mohamed Ahmed


Background:Carbapenem resistance in Pseudomonas aeruginosa is particularly worrisome because this class of β-lactam represents the last therapeutic resource for control of bacterial infection.

Objectives This study aimed to detect the frequency of bla OXA-48 resistance gene among Pseudomonas aeruginosa clinical isolates during the period from November 2018 to November 2019.

Methods: Hundred Pseudomonas aeruginosa clinical isolates, 81 carbapenems (imipenem meropenem) resistant and 19 carbapenems sensitive were collected from Omdurman Teaching Hospital, Fedail Hospital and Soba Teaching Hospital in Khartoum State-Sudan. All isolates were re-identified using conventional bacteriological techniques, their susceptibility to carbapenems were tested using Kirby-Bauer method for confirmation. All isolates were investigated for the presence of the bla OXA-48 gene using conventional PCR technique.

Results: 60 (60.0%) out of 100 Pseudomonas aeruginosa clinical isolates were positive for blaOXA-48 gene. Out of 81 carbapenem resistant isolates 54(66.7%) were positive for bla OXA-48 gene, while among the (19) carbapenem sensitive isolates 6 (31.6%) were positive for blaOXA-48 gene. There was statistically significant association between carbapenem resistant isolates and the presence of blaOXA-48 gene (P-value = 0.006).

Wound swabs were the predominant clinical samples detected harboring bla OXA-48 gene both among the sensitive 5 (83.3%) and carbapenem resistant isolates 29(53.7) (P.value> 0.05).

Conclusion: Our findings revealed high frequency of bla OXA-48 among carbapenem resistant isolates so identification of bla OXA-48 producing strains and taking efforts to reduce the rate of transferring these gene between the different strains is essential for optimization of  therapy and improves of patients outcomes.


1. Chang HH, Cohen T, Grad YH, Hanage WPO, Brien TF, Lipsitch M (2015) Origin and proliferation of multiple-drug resistance in bacterial pathogens.Microbiology and Molecular Biology Review,79(1):101-16.
2. Zheng P, Renee R, Bernard RG, Tong-Jun L, Zhenyu C (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology advances, 37: 177-192.
3. Estepa V, Rojo-Bezares B, Torres C., Saenz Y (2014). Faecal carriage of pseudomonas aerginosa in healthy humans; antimicrobial susceptibility and global genetic lineages. Federation of European Microbiological Societies Microbiology Ecology 89(1): 15-9.
4. Ciofu O, Tolker-Nielsen T, Jensen PO, Wang H, Hoiby N (2015). Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Advanced Drug Delivey Review, 85:7-23.
5. Gomez-Zorrilla S, Camoez M, Tubau, F., Periche E, Cañizares R, Dominguez MA, et al.,(2014). Antibiotic pressure is major resik factor for rectal colonization by multi drug-resistance pseudomonas aeruginosa in critically ill patients. Antimicrobial agents Chemotherapy, 58 (10) 63-70.
6. Acharya M, Joshi PR, Thapa K (2017) Detection of metallo-beta lactamases-encoding genes among clinical isolates of pseudomonas aeruginosa in a terrtiary care hospital,Kathmandu, Nepal. BMC Research Notes,10 (1): 718.
7. Toval F, Guzman A, Madriz V (2015) Predominance of carbopenem-resistant pseudomonas aeruginosa isolates carrying bla IMP and blaVIM metallo-Beta lactamase in amajor hospital in Costa Rica. Journal of Medical Microbiology, 64(1): 37-43.
8. Huang S, Liu M, Lin C, Shi Z (2014) Molecular surveillance and clinical outcomes of carbapenem-resistant Escherchia coli and Klebsiella pneumonia infection. Journal of Microbiology, Immunology and Infection, 47(3):187-196.
9. Sahuquillo-Arce JM, Hernández-Cabezas A, Yarad-Auad F, Ibáñez-Martínez E, Falomir-Salcedo P, Ruiz-Gaitán A (2015) Carbapenemases: a worldwide threat to antimicrobial therapy. World J Pharmacol,4(1): 75–95.
10. Poirel L, Marque S, He´ritier C, Segonds C, Chabanon G, Nordmann P ( 2005) . OXA-58, a novel class D (beta)-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrobial. Agents and Chemotherapy,49 (1): 202–208.
11. Carrër A, Poirel L, Yilmaz M, Akan OA, Feriha C, Cuzon G, et al., (2010). Emerging spread of OXA-48-encoding plasmid from Turkeyand beyond. Antimicrob Agents and Chemother,54: 1369–73.
12. Florian P, Maurer; Claudio, C.; Chantal, Q.; Guido, V.; Bloemberg and Michael, H., (2015). Evaluation of Carbapenemase Screening and Confirmation Tests with Enterobacteriaceae and Development of a Practical Diagnostic Algorithm. Journal of Clinical. Microbiology, 53: 95–104.
13. European Committee on Antimicrobial Susceptibility Testing (2013) Guidelines for detection of resistance mechanisms and specific resistances of clinical and /or epidemiological importance .Version 1.0. European committee on antimicrobial susceptibility testing, Basel, Switzerland.
14. Dijk KV, Voets GM, Scharringa J, Voskuil S, Fluit AC, Rottier WC, Leverstein-Van Hall MA, Cohen Stuart, JWT (2014) A disc diffusion assay for detection of class A, B and OXA-48 carbapenemases in Enterobacteriaceae using phenyl boronic acid, dipicolinic acid and temocillin. Clin Microbiol Infect, 20: 345–349.
15. Tijet N, Boyd D, Patel SN, Mulvey MR, Melano RG (2013) Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrobial Agents and Chemother, 57: 4578-4580.
16. Laurent P, Anaı S, Potron, Patrice N (2012) OXA-48-like carbapenemases: the phantom menace. Journal of Antimicrob Chemother, 67: 1597–1606.
17. Livermore DM, Woodford N (2006). The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends in Microbiology,14(9): 413–420
18. Carre¨r A, Poirel L, Eraksoy H, Cagatay AA, Badur S, Nordmann P (2008) Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrobial. Agents and Chemotherapy. 52:2950–2954.
19. Cuzon, G, Ouanich J, Gondret R, Naas T, Nordmann P (2011). Outbreak of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in France. Antimicrob. Agents Chemother, 55(5): 2420-2423
20. Pasteran F, Tijet N, Melano RG, Corso A (2015). Simplified protocol for carba NP test for enhanced detection of carbapenemase producers directly from bacterial cultures. Journal of Clinical Microbiology, 53 (12): 3908-3911.
21. Dahab RA, Alamin AM, Altayb HN (2017). Phenotypic and genotypic detection of carbapenemase enzymes producing gram negative bacilli isolated from patients in Khartoum state. F1000 Research , 6: 16-56.
22. Monteiro J, Widen RH, Pignatari AC, Kubasek C, Silbert S (2012). Rapid detection of carbapenemase genes by multiplex real time PCR. Journal of Antimicrob Chemother, 67 (4): 906-9.
23. Peter S, Lacher A, Marschal M, Hölzl F, Buhl M, Autenrieth I, et al., (2014) . Evaluation of phenotypic detection methods for metallo-β-lactamases (MBLS) in clinical isolates of Pseudomonas aeruginosa. European Journal of Clinical Microbiology & infectious Diseases, 33(7):33-41.
24. Nordmann, P.; Naas, T. and Poirel, L., (2011) Global spread of carbapenemase producing Enterobacteriaceae . Emerging Infectious Diseases, 17 (10): 1791-1798.
25. Yagoup MA, Taha. AA, Mubarak AK, Abdlla AE, Ournasseir ME, Abosalif KOA, et al. (2018) Drugs-Resistant Pseudomonas aeruginosa Isolated from Various Clinical Specimens in Khartoum, Sudan. P J M H S, 2 13(2): 441-444.
26. Mohamed SER, Alobied A, Hussien WM, Saeed MI (2018) blaOXA-48 Carbapenem Resistant Pseudomonas aeruginosa Clinical Isolates in Sudan. Journal of Advances in Microbiology 10 (4): 1-5.
27. Murphy TA, Simm AM, Toleman MA, Jones RN, Walsh TR (2003). Biochemical characterization of the acquired metallo-β-lactamase SPM-1 from Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy , 47 (2) : 582-7.
28. Adam MA, Elhag WI (2018). Prevalence of Metallo-beta lactamase Acquired Genes among Carbapene ms Susceptible and Resistant Gram Negative Clinical Isolates Using Multiplex PCR. BMC infectious Diseases, 18 (1): 668.
How to Cite
ALI, Doha Omer; ARBAB, Mohamed Hussein; AHMED, Nagla Mohamed. Molecular Detection of bla OXA-48 Gene Encoding Carbapenem Resistance Pseudomonas aeruginosa Clinical Isolates from Khartoum State Hospitals, Sudan. Gezira Journal of Health Sciences, [S.l.], v. 2, n. 16, p. 18-26, feb. 2021. ISSN 1810-5386. Available at: <>. Date accessed: 19 apr. 2021.